Покеристы часто используют слово «дисперсия», когда хотят сказать, например, что их переехали на ривере. Для большинства из них дисперсия означает лишь изменение вектора удачи, обычно в худшую сторону. Но дисперсия имеет математическое описание и зависит от двух причин:
- От покерных богов.
- От нашего игрового стиля.
В этой статье я объясню, что представляет собой дисперсия в кэш-играх, а в следующий раз мы поговорим о том, что такое дисперсия в турнирах и как она влияет на турнирную стратегию.
Покерные боги безжалостны
Покерные боги — математики. Независимо от того, кто мы, они дарят нам карманных тузов 1 раз за 221 раздачу (в среднем) или в 0,4525% случаев. Когда мы получаем на флопе флеш-дро, на тёрне они закрывают его в 19,149% случаев. На длинной дистанции наши результаты становятся всё ближе и ближе к закону распределения, установленному покерными богами.
Основной момент здесь в том, что на длинной дистанции никто не будет значительно удачливее других. Хотя математическая дисперсия может существенно влиять на наши краткосрочные результаты, на длинной дистанции она приближается к своему естественному уровню.
Кривая нормального распределения мистера Либерти
Мистер Либерти — это игрок в онлайн-кэш с большой базой данных PokerTracker. Рассмотрим его прибыль в каждой из сессий, состоящей из 100 раздач. График прибыли показан на Рисунке 1. Мы видим, что его средняя прибыль за сессию очень мала по сравнению с колебаниями банкролла, которые он испытывает от сессии к сессии. Его средняя прибыль равна 4,22 большого блайнда за 100 раздач, а среднеквадратичное отклонение составляет 71 ББ/100.
Рисунок 1. Распределение сессий мистера Либерти длиной 100 раздач каждая.
Горизонтальная ось — число сессий, вертикальная ось — прибыль в каждой сессии
Рисунок 2 отражает те же данные, но иначе: он показывает, как часто мистер Либерти выигрывает или проигрывает каждую возможную сумму денег. Его результаты представляют собой классическую кривую в виде колокола, которую математики называют кривой Гаусса или кривой нормального распределения. На этом графике видно, что его винрейт составляет 4,22 ББ/100 со среднеквадратичным отклонением 71 ББ/100 (1 сигма). Результаты с отклонением в ±1 сигму от среднего значения включают в себя 68% всей выборки.
Рисунок 2. Распределение прибыли в сессиях мистера Либерти: 4,22 ± 71 ББ/100
Но в этом массиве данных есть дополнительная полезная информация.
Кривая на Рисунке 3 показывает прибыль мистера Либерти нарастающим итогом на интервале в 1000 сессий. Его общая прибыль за этот отрезок — 4219 ББ, а винрейт — 4,219 ББ/100. В любой точке его текущую прибыль можно сравнить с ожидаемой прибылью (пунктирная линия), что даёт нам новый массив данных. На основе этой информации мы можем рассчитать среднеквадратичное отклонение его время-зависимой прибыли, и оно составляет 2,22 ББ/100.
Рисунок 3. Прибыль мистера Либерти нарастающим итогом за 1000 раздач.
Пунктирная линия показывает ожидаемую прибыль в каждой точке
Таким образом, долгосрочный винрейт мистера Либерти за эту выборку в 100 000 раздач равен 4,2 ± 2,2 ББ/100. Его время-зависимая сигма 2,2 ББ/100 показывает, насколько он может быть уверен в том, что его текущий винрейт соответствует истинному. В данном случае с вероятностью 68% его истинный винрейт находится в интервале от 2 до 6,4 ББ/100. И чем дольше он играет, тем меньше становится эта сигма и тем больше он может быть уверен в своём текущем винрейте.
Игровой стиль влияет на дисперсию
Не вдаваясь в детали, среднеквадратичное отклонение нашего распределения — это просто квадратный корень из математической дисперсии. Поэтому мы можем изучать нашу покерную дисперсию, анализируя статистический параметр StdDev(BB/100) из моей базы данных, включающей 121 тысячу онлайн-игроков. Среднее значение по всей базе составляет 71 ББ/100, но у 2000 игроков с самой большой выборкой (назовём их «ветеранами») этот показатель составляет всего 60 ББ/100. «Ветераны» играют лучше среднего игрока, поэтому можно прийти к выводу, что у более сильных игроков дисперсия ниже. Но верно ли это?
Рисунок 4. Зависимость показателя StdDev(BB/100) в PokerTracker от показателя VPIP% у «онлайн-ветеранов»
Рисунок 4 отражает зависимость показателя StdDev от показателя VPIP для «ветеранов». VPIP — это процент раздач, в которых игрок добровольно внёс деньги в банк на префлопе, этот показатель отражает лузовость игрока. Очевидно следующее:
И действительно, у самых лузовых «ветеранов» дисперсия примерно на 80% выше, чем у самых тайтовых из них. А поскольку у среднего «ветерана» VPIP% (17,0%) значительно ниже, чем в среднем по базе данных (22,1%), следует ожидать, что и дисперсия у него тоже будет ниже.
Исследовав связь между дисперсией и префлоп-агрессией, мы найдём следующую закономерность:
Мы можем изучить многие другие статистические показатели — частоту 3-бетов на префлопе, частоту контбетов на флопе, частоту флоатинга, размеры ставок и т. д, — но принцип не изменится:
Мастерство не определяет дисперсию
Рисунок 4 ничего не говорит нам о том, имеют ли более сильные игроки более низкую дисперсию. Более сильные игроки обычно тайтовее среднего игрока, но они также и более агрессивны. Но всё же они не самые тайтовые и не самые агрессивные.
Однако у сильнейших онлайн-игроков, как правило, наивысший коэффициент префлоп-агрессии (Aggression Ratio), представляющий собой отношение PFR% к VPIP%. Когда они разыгрывают какую-то руку, они почти всегда делают это рейзом, а не коллом. Поэтому давайте посмотрим на зависимость дисперсии от коэффициента агрессии AR, представленную на Рисунке 5.
Рисунок 5. Зависимость показателя StdDev(BB/100) в PokerTracker
от показателя Preflop Aggression Ratio (AR) у «онлайн-ветеранов»
Этот график не обнаруживает корреляции между коэффициентом агрессии (Aggression Ratio) и дисперсией. Слабые игроки с AR = 0,1 почти не делают рейзов, предпочитая входить в торговлю коллом. Сильные игроки с AR = 0,8 делают рейз почти каждый раз, когда входят в банк. Но при этом их дисперсия практически одинакова.
Вывод
Дисперсия — ключевая концепция, которую должен изучить каждый кэш-игрок. Неправильно сваливать свои плохие результаты на невезение, потому что на длинной дистанции покерные боги дают равную долю удачи каждому игроку.
Но дисперсия зависит от нашего игрового стиля. Колебания нашего банкролла будут намного больше, если мы играем очень лузово и агрессивно. Эти колебания могут повлиять на наш подход к игре, например, заставляя нас тильтовать, что, в свою очередь, может повлиять на наш винрейт.
Кроме тилта, у кэш-игрока нет причин управлять своей дисперсией для достижения более высокой прибыли. Это резко контрастирует с дисперсией в турнирах, о которой я расскажу в следующей статье.